分子振動也可能引起分子極化率的變化,產生拉曼光譜。它不是觀察光的吸收,而是觀察光的非彈性散射。非彈性散射光很弱,過去較難觀測。激光設備的出現使靈敏度和分辨力大大提高,應用日益廣泛。
一、什么是拉曼光譜分析法?
它是基于印度科學家C.V.拉曼(Raman)所發現的拉曼散射效應,對與入射光頻率不同的散射光譜進行分析以得到分子振動、轉動方面信息,并應用于分子結構研究的一種分析方法。
二、原理:
當光線照射到分子并且和分子中的電子云及分子鍵結產生相互作用,就會發生拉曼效應。對于自發拉曼效應,光子將分子從基態激發到一個虛擬的能量狀態。當激發態的分子放出一個光子后并返回到一個不同于基態的旋轉或振動狀態。在基態與新狀態間的能量差會使得釋放光子的頻率與激發光線的波長不同。
如果最終振動狀態的分子比初始狀態時能量高,所激發出來的光子頻率則較低,以確保系統的總能量守衡。這一個頻率的改變被名為Stokesshift。如果最終振動狀態的分子比初始狀態時能量低,所激發出來的光子頻率則較高,這一個頻率的改變被名為Anti-Stokesshift。拉曼散射是由于能量透過光子和分子之間的相互作用而傳遞,就是一個非彈性散射的例子。
關于振動的配位,分子極化電位的改變或稱電子云的改變量,是分子拉曼效應必定的結果。極化率的變化量將決定拉曼散射強度。該模式頻率的改變是由樣品的旋轉和振動狀態決定。